ACM ICPC Manila 2016

Solution Sketches

Problem G: Go Go Go Special Action Force!

- Easy problem
- Check if the input is a valid Sudoku grid
- Option 1: sets
- Option 2: bitmasks
- Just be careful!

Problem L: LoL Tournament

- The tournament is a binary tree
- The highest chance is those with fewest battles
- i.e., minimum depth
- Construct tree and compute depths
- Special case: $\mathbf{p}=\mathbf{0}$ or $\mathbf{p = 1}$
- All nodes are equiprobable!

Problem F: Frog Pushers

- Given sequence of edge removals, compute MST before each removal
- Bad:
- E times Prim's/Kruskal's
- Too slow
- $O\left(E^{2} \log E\right)$

Problem F: Frog Pushers

- Good:

- Reverse the input; so we're now dealing with edge additions.
- After each edge addition, compute new MST. Throw away unused edges permanently.
- This keeps edge count at most V-1 always
- O(EV $\log \mathrm{V})$

Problem F: Frog Pushers

- Better:
- Maintain cost-sorted list of edges.
- O(EV a(V))
- Betterer:
- MST update after an insertion can be done in O(V)
- BFS to find the largest cost in the (new) cycle
- O(EV)

Problem F: Frog Pushers

- Asymptotically faster solutions exist
- (I think)
- Link-cut trees?

Problem K: Off the Rails

- Assume single segment / line.
- Calculus optimization / linear algebra
- Let $f(i, j)$ be this answer for the segment $p t[i . . j]$.
- $f(i, j)$ can be computed in $O(n)$.

Problem K: Off the Rails

- Assume single segment / line.
- Calculus optimization / linear algebra
- Let $f(i, j)$ be this answer for the segment $p t[i . . j]$.
- $f(i, j)$ can be computed in $O(1)$ by precomputing some sums.

Problem K: Off the Rails

- Let $\mathrm{F}(\mathrm{j})$ be the answer for $\mathrm{pt}[1 . . \mathrm{j}]$.
- $F(0)=0$
- $F(j)=\min _{i} F(i)+C+f(i+1, j)[0 \leq i<j]$
- Dynamic programming in $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Problem K: Off the Rails

- Yes, the title doesn't start with a "K"... it's off the rails

Problem B: Balloon Distribution

- Simple solution: Priority queue - $\mathbf{O}(\mathbf{N} \log \mathrm{M})$. Too slow

Problem B: Balloon Distribution

- Assume $\mathbf{a / b}$ is the ratio in the last rank. How many balloons?
- count(a/b):= sum($1 \leq i \leq M$) floor(P[i]*b/a)
- Binary search to find the real last ratio \mathbf{a} / \mathbf{b}.
- Quite tricky. Be careful about precision.

Problem B: Balloon Distribution

- One way to do it:
- Let $M=\max (P[i])+1$. Find smallest $D: \operatorname{count}(M / D) \geq N$.
- Binary search
- Next, let $d[i]=$ floor $(P[i] * D / M)$
- Sort the list [P[1]/d[1], P[2]/d[2], ..., P[M]/d[M]]
- The answer is in this list. Binary search again
- No big ints/floats necessary. Use 64-bits.
- $O(M(\log M+\log N))$

Problem J: Jack and Jill and Joe

- The dimensions are a^{2} and $b(b+a)$, and we want - $\left(a^{2}-b(b+a)\right)^{2} \leq 900$
- equivalently, $a^{2}-b(b+a)=d$ for some $|d| \leq 30$.
- equivalently, $(2 b+a)^{2}-5 a^{2}=4 d$ for some $|d| \leq 30$.
- Gives us 61 generalized Pell equations!

Problem J: Jack and Jill and Joe

- Solutions follow a familiar pattern: a 2D recurrence.
- In fact, Fibonacci recurrence:

■ (a, b) is a solution $->(a+b, a)$ is a solution

- Pattern-match and precompute all solutions for alld.

Problem J: Jack and Jill and Joe

- There are so few solutions: 443
- they grow exponentially
- To answer a query \mathbf{N}, easiest to just linear search.
- Watch out for d's with multiple "solution families"!

Problem I: Imelda's Shopping Spree

- Range queries:
- Range increment.
- Range reverse.
- Query: How many contiguous increasing subsequences?

Problem I: Imelda's Shopping Spree

- Compute the difference array $\mathrm{D}[\mathrm{i}]=\mathrm{P}[\mathrm{i}+1]$ - $\mathrm{P}[\mathrm{i}]$.

Then:

- Range increment reduces to 2 "point increments".
- Range reverse reduces to range reverse + range negate + 2 "point increments".
- Query reduces to counting the number of contiguous positive subsequences.

Problem I: Imelda's Shopping Spree

- Splay tree or treap can handle reverse. Need the following info for every node:
- Sum of values.
- Longest pos./neg. streak on left and right.
- Number of contiguous pos./neg. subsequences.
- Need to keep track of negatives to account for range negates
- "Reverse" flag for lazy propagation

Problem C: Convex Quadrilaterals

- Only convex hull matters.
- DP: Choose starting edge and keep track of current edge and number of edges used so far.
- $\mathbf{O}\left(\mathbf{N}^{3}\right)\left(\mathbf{O}\left(\mathrm{N}^{2}\right)\right.$ states, $\mathbf{O}(\mathrm{N})$ transition $)$
- To compute (signed) areas, you can use shoelace formula

Problem E: Expression

- Easy/tricky cases
- If $\mathbf{y}=0$, output $\mathrm{xx}-$
- If $\mathbf{y}>\mathbf{0}$ and $\mathbf{x}=\mathbf{0}$, impossible.
- General case: 28 ops quite tight!
- Binary, ternary, etc., don't work

Problem E: Expression

- Let $\{\mathrm{y}\}$ be a string that evaluates to $\mathbf{x y}$ for any $\mathbf{x}>\mathbf{0}$. - Output "\{y\}x/"
- You can write $\{y\}$ in ≤ 27 operations! - for $\mathbf{0}<\mathbf{y}<1212$

Problem E: Expression

- Tricks:

$$
\begin{aligned}
& \circ\{1\}=x \\
& \circ\{a b\} \leq\{a\}\{b\} \times / * \text { for } a, b>1 \\
& \circ\{a+b\} \leq\{a\}\{b\}+\text { for } a, b>0 \\
& \circ \text { " } \leq " \text { means "has the ff. candidate solution" }
\end{aligned}
$$

Problem E: Expression

- Tricky trick:
- Use subtraction!
- $\{a b-c\} \leq\{a\}\{b\} x / *\{c\}-$

■ for $a, b, c<a b-c$.

- Without it, you might fail 1103.
- With these tricks, generate all.

Problem E: Expression

- Worst case?
- 27 operations: $823,1006,1111,1198,1211$...
- 28 operations: 1114, 1138, 1166, 1193
- I'd like to see better solutions!

Problem E: Expression

- Be careful with intermediate values!
- They should be small
- Always divide first:
- $\{a\}\{b\} * x /->\{a\}\{b\} \times / *$

Problem A: AdoraBalls

- Invert the 4D matrix, and check if the resulting product with the vector is all nonnegative.
- Tricky when non-invertible.

Problem A: AdoraBalls

- Another way to look at it:
- Given 4D points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$, can P_{0} be expressed as a nonnegative rational linear combination of P_{1}, P_{2}, $\mathrm{P}_{3}, \mathrm{P}_{4}$?
- Also known as convex combination

Problem A: AdoraBalls

- Project all points to a 3D-hyperplane
- $x+y+z+w=1$
- The problem is now: Is the 3D point P_{0}^{\prime} inside the tetrahedron with vertices $\mathrm{P}_{1}{ }^{\prime}, \mathrm{P}_{2}{ }^{\prime}, \mathrm{P}_{3}{ }^{\prime}, \mathrm{P}_{4}{ }^{\prime}$?

Problem A: AdoraBalls

- Is the 3D point $P_{0}{ }^{\prime}$ inside the tetrahedron with vertices $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}{ }^{\prime}, P_{4}^{\prime}$?
- General case:
- For each vertex P_{i}^{\prime}, check if P_{0}^{\prime} is in the same side of the plane determined by the remaining three vertices.
- Cross products + Dot products

Problem A: AdoraBalls

- Watch out for special/degenerate cases! E.g.
- The tetrahedron has zero area, e.g. it's 2D, 1D, 0D, etc.
- One (or more) of the original 4D points is the origin (0,0,0,0).
■ Can't be projected; needs special handling.
- Be careful with precision!
- Add fractions with Icm.

Problem D: Disco Dance Debacle

- A disco dance always alternates row and column and ends up at the starting point.
- Thus, number of lit cells it unlits per row/column is even.
- Thus, necessary condition is: each row/column must have even no. of lit cells.

Problem D: Disco Dance Debacle

- It's also sufficient!
- Draw a bipartite graph with $\mathbf{m + n}$ nodes, and edge (i, j) if cell (i, j) is lit.
- Then a disco dance is just a simple cycle!
- Each connected component can be decomposed into a cycle
- Eulerian cycle

Problem D: Disco Dance Debacle

- So the goal is: make the no. of lit cells even, per row/column.
- If there are \mathbf{R} rows and \mathbf{C} columns with odd no. of lit cells, then $\max (\mathrm{R}, \mathrm{C})$ moves are necessary to make them all even.
- It's also sufficient!
- Why?

Problem D: Disco Dance Debacle

- So we have to compute \mathbf{R} and \mathbf{C}. (Symmetric)
- Sweep line + Range queries to process events:
- Range increment/decrement.
- Range "how many are equal to 0 ".
- Segment tree:
- Insight: " 0 " only ever appears as the min.
- (min value, frequency of min value)

Problem H: Handbags

- BFS/DFS too slow; large dimensions
- Be careful; prices can't "pass through" sources.
- Sometimes sources even block off some sections of the map.

Problem H: Handbags

- Solution: Coordinate compression.
- Let $X=\{0, a\} \cup\{x-1, x, x+1$ for all sources $(x, y)\}$
- Let $Y=\{0, b\} \cup\{y-1, y, y+1$ for all sources $(x, y)\}$
- Dijkstra on the coordinates X and Y.
- Coordinate compression
- "Fill in" each (big) cell in $\mathrm{O}(1)$ using tricky arithmetic

Thank you!

- Credits
- AdoraBalls - Atienza
- Balloon Distribution - Muga, Atienza
- Convex Quadrilateral - Manalastas
- Disco Dance Debacle - Atienza
- Expression - Atienza
- Frog Pushers - Atienza
- Go Go Go Special Action Force! - Chua
- Handbags - Muga, Atienza
- Imelda's Shopping Spree - Atienza
- Jack and Jill and Joe - Sioson, Atienza
- Off the Rails - Zuniga
- LoL Tournament - Atienza
- Judges
- Dr. Allan Sioson
- Also chief judge
- Dr. Pablo Manalastas
- Mr. Kevin Atienza
- Also testing
- Also additional test cases
- Also problem extensions
- Dr. Philip Zuniga
- Dr. Felix Muga
- Dr. Caslon Chua

